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Multifractal Statistics of Mesoscopic Systems
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A generalization of the Havlin�Bunde multifractal hypothesis is used to obtain
a probability distribution corresponding to mesoscopic systems close to the
critical regime. Good agreement between results of numerical simulations per-
formed by different authors and this new type of probability distribution is
established.
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1. INTRODUCTION

In mesoscopic regime (i.e., for phase coherent systems) and in presence of
disorder the electronic states can become localized. Such a system can
exhibit a transition from localized to extend eigenstates. Moreover, close to
the transition the wave functions fluctuate on all scales up to the system
size L and the squared modulus of these critical wave functions forms a
multifractal measure (see, for instance, ref. 1 and references therein). Multi-
fractality is an indication for broad distributions of scaling variables. To
find an universal probability distribution corresponding to this situation (if
such distribution exists) is an actual problem.

The generalized fractal dimensions��Dq , are generally used to describe
the multifractal regimes. For small q, for instance, linear approximation of
Dq corresponds to the log-normal distribution.(1, 2) The linear approxima-
tion is generally applicable in a narrow vicinity of point q=0 only. Thus,
one should seek an adequate representation for Dq (different from the ``log-
normal'') behind of this vicinity. While the log-normal distribution has an
universal character (corresponding to the linear approximation of Dq in a
vicinity of point q=0) this new statistical distribution should have more

725

0022-4715�99�0300-0725�16.00�0 � 1999 Plenum Publishing Corporation

1 P.O. Box 39953, Ramat-Aviv 61398, Tel-Aviv, Israel.



special nature and should correspond to the transition from mono-
fractality(3) to multifractality.

In the present paper a new method to obtain such statistical distribu-
tion is suggested. This method based on a generalization of the Havlin�
Bunde multifractal hypothesis.(4) Characteristic function of this probability
distribution has been obtained in an explicit form. It is shown that this dis-
tribution corresponds to some multifractal generalization of the Bernoulli
distribution. A representation of the generalized dimensions Dq , corre-
sponding to the multifractal Bernoulli distribution, has been compared
with results of numerical calculations performed by different authors for
different models of the mesoscopic systems.(5�8)

The localization properties of the eigenstates are also reflected in the
spectral properties of the systems. It is shown in ref. 5 (see also ref. 9) that
there is a simple relationship between the generalized dimensions construc-
ted on spatial and on spectral measures. In the present paper we apply the
multifractal Bernoulli distribution also to data obtained in ref. 10 for
eigenstates spectrum of a quasi-periodically driven (kicked) spin system.
The kicked quantum systems give also another remarkable example of
applicability of the multifractal Bernoulli distribution. Namely, the kicked
rotator (quantized standard map) exhibits dynamical localization that
bears analogies with Anderson localization in 1D lattices.(11) The multifrac-
tal analysis of the spectral measure of the Kicked Harper Model performed
in ref. 11 allows to apply the multifractal Bernoulli distribution to such
class of multifractal systems as well.

2. MULTIFRACTAL BERNOULLI DISTRIBUTION

A continuous set of the exponents, so-called generalized dimensions��
Dq is usually used to described the multifractal behavior. These generalized
dimensions are determined from equation

Z(q)= :
N

i=1

[ +i (r)]q
t(r�L){(q) (1)

where

{(q)=(q&1) Dq (2)

and given lattice with linear system size L is partitioned into N boxes of
size r (Nt(L�r)d, d is the topological dimension of the lattice), the measure
+i is the amplitude of the wave function squared on the i th box and the
limit r�L � 0 is taken.
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Let us define

+i =+i �max
i

[ +i ] (3)

Then

( +� p)=
1
N

:
i

+ i
p (4)

A simplest structure, that can be used for fractal description, is a system for
which + i can take only two values 0 and 1. It follows from (3) and (4) that
for such system (with p>0)

( +� p) =( +� ) (5)

and fluctuations in this system can be identified as Bernoulli fluctua-
tions.(12) It is clear that the Bernoulli fluctuations can be monofractal only.

Generalization of (5) in form of a generalized scaling

( +� p)t( +� ) f ( p) (6)

can be used to describe more complex (multifractal) systems. We use
invariance of the generalized scaling (6) with dimension transform(13)

+i � +i
* (7)

to find f ( p). This invariance means that

( ( +� *) p)t( ( +� *)) f ( p) (8)

for all positive *. Then, it follows from (6) and (8) that

( ( +� )*p)t( +� ) f (*p)
t( +� ) f (*) f ( p) (9)

Hence,

f (*p)= f (*) f ( p) (10)

General solution of functional equation (10) is

f ( p)= p# (11)

where # is a positive number. This relationship can be considered as a
generalization of the Havlin�Bunde multifractal hypothesis.(4) It should be
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noted that case #=1 corresponds to Gauss fluctuations.(14) We, however,
shall consider limit # � 0 (i.e., transition to the Bernoulli fluctuations). This
transition is non-trivial. Indeed, let us consider generalized scaling

FqmtF :(q, k, m)
km (12)

where

Fqm=( +� q)�( +� m) (13)

Substituting (6) into (12), (13) and using (11) we obtain

:(q, k, m)=
q#&m#

k#&m#

Hence,

lim
# � 0

:(q, k, m)=
ln(q�m)
ln(k�m)

(14)

If there is ordinary scaling

( +� p)t(r�L)`p (15)

then

:(q, k, m)=
`q&`m

`k&`m
(16)

From comparison (14) and (16) we obtain at the limit # � 0

`q&`m

`k&`m
=

ln(q�m)
ln(k�m)

(17)

General solution of functional equation (17) is

`q=a+c ln q (18)

where a and c are some constants.
If we use relationship

max
i

[ +i ]t(r�L)D� (19)
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(see, for instance, ref. 15), then it follows from (2), (3) and (15), (18), (19)
that

Dq=D�+c
ln q

(q&1)
(20)

for the multifractal Bernoulli fluctuations (i.e., for the fluctuations which
appear at the limit # � 0).

From (6), (15) and (18) we can find f ( p) corresponding to the multi-
fractal Bernoulli fluctuations

f ( p)=1+
c
a

ln p (21)

where a=d&D� . One can see that for finite c the dimension-invariance is
broken at the limit # � 0.

Let us find the characteristic function of the multifractal Bernoulli dis-
tribution. It is known that the characteristic function /(*) can be represented
by following series (see, for instance ref. 12)

/(*)= :
�

p=0

(i*) p

p!
( +� p) (22)

Then using (6) and (21) we obtain from (22)

/(*)=1+( +� ) :
�

p=1

(i*) p

p!
p ; (23)

where

;=
c

(d&D�)
ln( +� ) (24)

The characteristic function (23) gives complete description of the multifrac-
tal Bernoulli distribution. When c=0 distribution (23)�(24) coincides with
the simple Bernoulli distribution.(12)

It follows from (3) and (4) that ( +� ) �1. Therefore one obtains from
(24) that ;�0 (due to ln( +� )�0, 0�c, and 0�d&D�). This is signifi-
cant because for ;>0 the representation (23) may not correspond to a
normalized probability. Indeed, for this characteristic function ( +� p) =
( +� ) p ;. On the other hand, by Ho� lder inequality one has

( +� p)�( +� pq) 1�q
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for any integer q. Therefore

( +� ) p ;�( +� ) 1�q ( pq) ;�q

Letting q tend to infinity in the above inequality one obtains

( +� ) p ;�1

Since ( +� ) �1 and 1� p (in representation (23)), then this inequality is
satisfied for ;�0 and it is not satisfied (for large enough p) when ;>0.
Therefore the characteristic function (23) corresponds to some real proba-
bility distribution for ;�0 only (that takes place in our case (24)).

The multifractality�monofractality phase transition (with # � 0) corre-
sponds to a gap from c=0 to a finite non-zero value of c. If we use a
thermodynamic interpretation of the multifractality represented in ref. 16,
then the constant c can be interpreted as multifractal specific heat of the
system. The gap of the multifractal specific heat at the multifractality�
monofractality transition (i.e., with # � 0) allows us consider this transition
as a thermodynamic phase transition.(17)

3. CRITICAL MESOSCOPIC SYSTEMS: EIGENSTATES

In a recent paper(5) numerical calculations of the local density states
at disorder-induced localization�delocalization transitions were performed
for two- and three-dimensional network models of the integer quantum
Hall effect(18) and the so-called quantum Hall insulator, respectively. Figure 1
(adapted from ref. 5) shows the function Dq�2 calculated for a two-dimen-
sional network model at the quantum Hall critical point.(18, 19) In this
figure the axes are chosen for comparison between the data (dots) and the
multifractal Bernoulli representation (20) (straight line). One can see good
agreement between the data and the representation (20). Figure 2 (also
adapted from ref. 5) shows the analogous data calculated in ref. 5 for a
three-dimensional network.(20) In contrast to the two-dimensional network,
here a band of extended states appears. And again, the multifractal Bernoulli
fluctuations appear at the mobility edge of this system, as one can see from
Fig. 2 (in Fig. 2 straight line corresponds to the multifractal Bernoulli
representation (20)). In ref. 6 the authors have examined the three-dimen-
sional Schro� dinger equation with a random potential at each lattice site,
described by the Anderson Hamiltonian:

H=:
x

=x |x)(x|+V :
(x, y)

|x)( y|
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Fig. 1. Generalized dimensions Dq�2 against ln(q)�(q&1) for a 2D network model at the
quantum Hall critical point. Data (dots) taken from ref. 5. The straight line is drawn for com-
parison with representation (20).

with constant nearest-neighbor transfer integral V and random potential =x

governed by an uniform distribution of width W. The sums extend over all
lattice sites x and (x, y) denotes all nearest-neighbor pairs of sites in a
three-dimensional lattice. The parameter W describes the strength disorder
and the metallic-insulator transition is believed to occur at Wc&16.5 for
3D samples.(21, 22) For W>Wc all states are localized and the conductivity
is zero, while for W<Wc mobility edges appear in the band separating
localized states near the band centre. In ref. 6 the model equation was

Fig. 2. Generalized dimensions Dq�3 against ln(q)�(q&1) for a 3D network model. Data
(dots) taken from ref. 5. The straight line is drawn for comparison with representation (20).
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Fig. 3. Generalized dimensions Dq against ln(q)�(q&1) for 3D Anderson transition. Data
(dots) taken from ref. 6. The straight line is drawn for comparison with representation (20).

numerically studied at the critical region and the generalized dimensions
Dq were calculated by plotting ln((�x |�n(x)| 2q) ) against ln(L). These
data (taken from ref. 6) are shown in Fig. 3. The axes on this figure are
chosen for comparison with representation (20) (straight line). One can see
good agreement between the data (dots) and this representation. In ref. 7
analogous multifractal spectrum was calculated for eigenstates in the critical
regime of a two dimensional electron gas in high magnetic field. Figure 4
(adapted from ref. 7) shows these data. One can see good agreement between
the data (dots) and the Bernoulli representation (20).

Fig. 4. Generalized dimensions Dq against ln(q)�(q&1) for multifractal wavefunctions in the
critical regime of 2D disordered electron systems in high magnetic field. Data (dots) taken
from ref. 7. The straight line is drawn for comparison with representation (20).
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4. ANDERSON TRANSITION IN SYSTEMS WITH
LONG-RANGE DISORDER

From the previous section we can suppose that the multifractality�
monofractality phase transition takes place in a vicinity of the Anderson
phase transition. Now the question is: Whether the multifractality�
monofractality phase transition takes also place in the Anderson model
with long-range disorder. For the long-range off-diagonal 3D disorder
where the nondiagonal matrix elements V(R) falling off B 1�R3 or slower
all states are delocalized(23, 24) (on other dimensions, d, this result can be
extended replacing 1�R3 by 1�Rd ). This dependence of transition matrix
elements is characteristic for the dipole interaction between elastic defects
in solids. Such type of interaction between soft harmonic oscillators leads
to universal linear frequency dependence of the density of states above the
boson peak in glasses.(25) Because of the long-range correlations these delo-
calized states have multifractal spatial structure causing anomalous diffu-
sion of excitation in the system.

In a recent paper(8) a numerical simulation of such type of a system was
performed. Off-diagonal disorder was introduced as Vij=(\1)�|Ri&Rj |

d.
Here Ri are Poisson-distributed random points in d dimensional space, and
the random sign, \1 provides for the average value (Vij ) =0 corresponding

Fig. 5. Generalized dimensions Dq�d against ln(q)�(q&1) for the most extended eigenstates.
Data (symbols) taken from ref. 8. The straight lines are drawn for comparison with multifrac-
tal Bernoulli's representation (20).
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to the interaction of randomly oriented electric or elastic dipoles. Figure 5
(adapted from ref. 8) shows generalized dimensions spectra obtained in this
numerical simulation for the most extended eigenstates in the spaces with
different dimensions: d=1, 2, 3. The straight lines are drawn for com-
parison with the multifractal Bernoulli representation (20). One can also
calculate c&d�3 from this figure. It is interesting to compare this rela-
tionship with relationship c=d�2 corresponding to the case of the ideal
monoatomic gas (where this relationship has purely geometrical nature
related to space dimensionality(17)). To obtain the relationship c=d�3 for
the multifractal thermodynamics of the Anderson model with long-range
disorder from generalized geometrical arguments seems to be an interesting
problem for future investigations.

5. MULTIFRACTAL BERNOULLI DISTRIBUTION
OF EIGENVALUES

The localization properties of the eigenstates are also reflected in the
spectral properties of the system. For such systems the spectral measure
excited by a wave packet is multifractal. In particular, it was found in ref. 9
that enhanced return probability of wave packets at the mobility edge of
quantum Hall systems could be interpreted both from the spectral as well
as the spatial properties of the local density states. Then it is shown in ref. 5
that at the mobility edge the generalized dimensions corresponding to the
spatial and spectral descriptions are proportional with a coefficient equal to
the space dimensions of the system. The data shown in Figs. 1 and 2 are
obtained in ref. 5 both from spatial and spectral analysis of the systems.
The generalized dimensions obtained in ref. 5 by both the methods agree
within the errors estimation.

Figure 6 (adapted from ref. 10) shows the generalized dimensions spec-
trum Dq for multifractal data (dots) obtained in a recent numerical simula-
tion of a quasi-periodically driven (kicked) spin-1

2 system with singular con-
tinuous spectrum. One can see that these data (constructed on the spectral
measure) is in good agreement with the Bernoulli representation (20)
(straight line).

The kicked quantum systems give also another remarkable example of
spectrum with multifractal measure. The kicked rotator (quantized
standard map) exhibits dynamical localization that bears analogies with
Anderson localization in 1D lattices.(11, 26) The Kicked Harper Model is
obtained upon quantization of the following area-preserving map(11)

pn+1= pn+K sin(xn), xn+1=xn&L sin( pn+1)
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Fig. 6. Generalized dimensions Dq for a quasi-periodically driven (kicked) spin-1
2 (results of

numerical simulation performed in ref. 10). The solid straight line indicates agreement of these
data with the Bernoulli representation (20).

Canonical quantization thus leads to the one period evolution operator

U=exp {&i
L
h

cos(hn̂)= exp {&i
K
h

cos(x)=
where n̂=&i ���x, and h�2? has to be considered as effective Planck con-
stant, playing a role similar to an incommensurability parameter in a
quasi-periodic system. A multifractal analysis performed for this model in
ref. 11 gives a set of generalized dimensions constructed on spectral
measure of this system. Figure 7 (adapted from ref. 11) shows these
generalized dimensions for two values of dimensionless time��400 (lower

Fig. 7. Generalized dimensions Dq for a kicked rotator at two moments of the time (results
of numerical simulation performed in ref. 11).
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set of dots) and 6400 (upper set of dots). One can see that the multifractal
Bernoulli representation (20) (straight lines) is in good agreement with
these data as well.

6. DISCUSSION

Usually, known probability density functions are used to obtain rela-
tionships between moments of different orders (see, for instance, ref. 13). In
the present paper we use a relationship between the moments, which appears
at a morphological phase transition from monofractality to multifractality,
to construct a new probability distribution (the multifractal Bernoulli dis-
tribution). Then, we compare this relationship with data obtained from
numerical simulations performed by different authors for different critical
mesoscopic systems to confirm that the multifractal Bernoulli distribution
could be used to describe these systems.

It now seems to be an interesting problem for future investigations to
calculate (numerically) the characteristic functions for the considered
mesoscopic systems as well. Then one could compare these functions with
the multifractal Bernoulli distribution (23) directly. It should be also noted
a morphological origin of the new statistical distribution, so that morpho-
logical nature of the transitions in the critical mesoscopic systems seems to
be an attractive subject both for analytical and for numerical investigations.
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